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ABSTRACT

Thermal-viscous fingering instability in porous media is a common phenomenon in nature as well as in many scientific problems and
industrial applications. Despite the importance, however, thermal transport in flow of a non-Newtonian fluid in porous media and the result-
ing fingering has not been studied extensively, especially if the pore space is heterogeneous. In this paper, we propose a pore network model
with full graphics processing unit-parallelized acceleration to simulate thermal transport in flow through three-dimensional unstructured
pore networks at centimeter scale, containing millions of pores. A thermal Meter equation is proposed to model temperature- and shear
stress-dependent rheology of the non-Newtonian fluids. After comparing the simulation results with an analytical solution for the location of
the thermal front in a spatially uncorrelated pore network, thermal transport in flow of both Newtonian and non-Newtonian fluids is studied
in the spatially uncorrelated and correlated pore networks over a range of injection flow rates. The simulations indicate that the injection
flow rate, the shear-thinning rheology, and the morphological heterogeneity of the pore space all enhance thermal-viscous fingering instabil-
ity in porous media, but with distinct patterns. In spatially correlated networks, the average temperature and apparent viscosity at the break-
through point in flow of a shear-thinning fluid exhibit non-monotonic dependence on the injection flow rate. An analysis of the fractal
dimension of thermal patterns at the breakthrough point supports the conclusion. The results highlight the importance of designing optimal
flow conditions for application purposes.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0080375

I. INTRODUCTION

Heat transfer in porous media is a common phenomenon in
nature as well as in many scientific and industrial problems, ranging
from heat transfer in magma in the Earth’s crust1 and in cementing
and drilling fluids,2 to thermal recovery of heavy oil,3 thermal insula-
tion systems,4 ceramic processing,5 filtration processes,6 heat flow in a
proton exchange membrane fuel cells,7 and drying of porous media.8

Although in the studies of heat transfer in flow systems it is often
assumed that the fluids are Newtonian, no real fluid fits perfectly the
definition of Newtonian rheology, even though some fluids, such as
water and air, can be approximated by the Newtonian rheology.
Recent molecular simulation for the flow of water in small pores and

tubes indicated that, under a variety of conditions, water follows non-
Newtonian, and, in particular, shear-thinning rheology9 in which case
its viscosity is dependent upon the hydrodynamics of the system, such
as the shear rate, in addition to the fact that it is also a function of the
temperature regardless of its rheological equation of state.

In order to upscale heat and mass transfer in flow of non-
Newtonian fluids in porous materials, one must deal with a system
whose complexity is fourfold: (a) spatial (and temporal) variability of
the shear rate, viscosity, and shear stress in the pore space; (b) prefer-
ential flow pathways of the fluids due to the spatial-statistical distribu-
tion of pore and throat sizes; (c) energy transfer across solid–fluid
interfaces; and (d) chemical and mineralogical heterogeneity across
distinct length scales. In the present paper, we address how the
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morphological heterogeneity of a porous medium affects heat and
mass transfer in flow of a non-Newtonian fluid in a porous medium,
demonstrating that it leads to instabilities in heat transfer, which we
refer to as thermal fingering.

To study the thermal transport in flow of a Newtonian fluid
through porous media, many experimental, analytical, and numerical
approaches have been proposed. For example, based on the particle
image velocimetry (PIV) and liquid crystal thermography (LCT) mea-
surements, the pore-scale velocity and temperature distribution were
generated and visualized in a refractive index-matched porous
medium.10 Accurate recording of the dynamic evolution of the tem-
perature in 3D porous media, particularly at pore-scale, is still an
unsolved problem. To estimate the upscaled thermal parameters, such
as thermal conductivity, and the convective heat transfer coefficient,
several analytical approaches have been proposed for simple sys-
tems.11,12 In addition, various theoretical approaches for thermal
transport in a certain class of porous media, such as packing of over-
lapping or non-overlapping particles, have been suggested and ana-
lyzed, comprehensive reviews of which are given by Torquato and
Haslach.13 Moreover, in systems with regular and well-defined geome-
try, such as circular pipes and annular flow between concentric pipes
with or without homogeneous porous media inside and known
boundary conditions, the steady-state temperature distribution can be
derived using such techniques as the volume-averaging method, and
assuming that the flow is in the Darcy, Brinkman, or Forchheimer
models.14–16 Such models and approaches represent oversimplifica-
tions that restrict their utility, as the dynamic thermal pattern in a het-
erogeneous porous medium cannot be analytically predicted, but do
provide useful checks for numerical simulations in simplified geome-
tries. To study the dynamics of pore-scale thermal transport, several
numerical approaches, such as direct numerical simulation17–19 and
pore-network models (PNMs) have been developed (see below).

Compared with the direct numerical simulations in images of
porous media, the PNMs have a lower computational cost and higher
numerical stability. They require, however, geometrical simplifications,
as the PNMs are not exact representations of the pore-scale morphol-
ogy of porous media. Despite this, the PNMs have been highly success-
ful in studies of various phenomena in porous media and have been
widely leveraged in recent years for simulating thermal transport in
porous media, especially as a tool to study phase-change of water as a
Newtonian fluid.7,20–22 Most of such research was realized using the
PNMs with regular connectivity, such as a simple-cubic network, in
order to simplify the calculation of local thermal equilibrium. In 3D
regular pore networks, Surasani et al.23,24 studied drying of porous
media by proposing a non-isothermal PNM. With the consideration
of heat exchange between the fluid and solid, Belgacem et al.25 pro-
posed a structured and collocated solid and fluid network to simulate
the formation of liquid water in the proton-exchange membrane fuel
cell. Koch et al.26 proposed an unstructured dual network, consisting
of pores and grains, to simulate the coupled liquid water flow and heat
transfer in both the void space and the solid matrix. Due to the high
computational cost of such algorithms, the domain in such simulation
is, however, usually small with only hundreds to thousands of pores,
because dynamic updating of the pressure, velocity, and temperature,
plus phase change that may occur at each time step require consider-
able calculations. Thus, the size of the simulation domain limits the
scope of a study of the effect of heterogeneity in porous media on such

phenomena. Recently, however, An et al.27 developed a fully graphical
processing unit (GPU)-based algorithm for PNM simulations in order
to accelerate the associated computations. In particular, the velocity
field is computed in a matter of several seconds in a network with mil-
lions of pores.

On the other hand, thermal transport in flow of a non-
Newtonian fluid in porous media, though highly important for many
natural and industrial applications, has not received the attention that
it deserves. The viscosity of a non-Newtonian fluid is a function of the
shear rate and is usually sensitive to temperature variations.28,29

Several empirical models for non-Newtonian rheology have been pro-
posed for predicting the relation between the viscosity and shear rate,
such as the Cross,30 Carreau–Yasuda,31 and Meter32 models for
power-law fluids. Sorbie et al.33 developed a 2D PNM to investigate
the rheology of pseudoplastic fluids in porous media. For power-law
fluids in a square grid network, Pearson and Tardy34 and Perrin
et al.35 studied the flow of a non-Newtonian fluid and the effect of tor-
tuosity on the transport process. Using networks extracted from actual
porous media, Lopez et al.36 studied the flow of shear-thinning fluid
and compared the results with four experiments. Following a similar
approach, the flow of a non-Newtonian fluid in pore networks without
the thermal effect was studied.37–40 It should, however, be pointed out
that all such studies were under isothermal conditions.

Since the properties of fluids vary with temperatures, the same
fluid at different temperatures may be assumed as being distinct. In
this way, the instability of the front, usually referred to as the
Saffman–Taylor instability for miscible fluids, was studied.41,42 Kong
et al.43 were presumably the first to report pore-scale experimental
visualization of thermal transport by analyzing the steam flooding of
heavy oil in a Hele-Shaw cell, i.e., the channel between two flat surfaces
with a small gap between them. Following their work, others carried
out experimental studies of displacement by steam in 2D micromo-
dels.44–48 Kuang et al.49 conducted experiments in a transparent capil-
lary tube, studying the displacement of a high-viscosity fluid at low
temperature by the same fluid but at a higher temperature with lower
viscosity, and analyzed the instability and Saffman–Taylor fingering.
Thermal-viscous instability in a Hele-Shaw cell was widely analyzed
by experiments.50,51 In addition, some numerical simulation methods
were proposed to investigate thermal-viscous fingering instability in a
porous medium at the continuum scale or/and in simple models.52–54

The present study aims at making two new contributions. One is
upscaling thermal and hydrodynamic properties of shear-thinning fluids
under non-isothermal conditions, which demonstrates how the instabil-
ity in thermal transport leads to nonlinearity in the upscaled flow prop-
erties. To our knowledge, there is no pore-scale simulation study that
incorporates non-Newtonian fluid flow under non-isothermal condi-
tions in porous media, which is the second contribution of the present
work. In addition to the focus of the work on non-isothermal transport
in flow of a non-Newtonian fluid, our work features the use of a GPU-
accelerated algorithm for simulating fluid flow and heat transport in 3D
unstructured networks, a unique feature that allows large pore-scale
simulations in correlated and uncorrelated pore networks with about
one million pore bodies (see Sec. II B).

The rest of this paper is organized as follows. First, we introduce
theoretical background for the governing equations of mass, momen-
tum, and energy transport in porous media, a rheological model for
the non-Newtonian fluid, and a numerical scheme used in the

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 023105 (2022); doi: 10.1063/5.0080375 34, 023105-2

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


simulations (Secs. II C and IID). Then, we describe how the correla-
tion length of the spatial heterogeneity in the pore network affects
thermal instability in flow of non-Newtonian fluids in porous materi-
als (Sec. III). The last section summarizes the paper and presents the
main conclusions. In Appendixes A–E, we present a comparison of
thermal fronts determined by simulations and the analytical solutions,
the difference between thermal fingering in 3D structured and
unstructured networks, the effect of a solid phase on heat transfer, the
distribution of shear stress and viscosity at pore scale, and the impact
of a shear-thickening fluid on thermal fingering patterns.

II. METHODOLOGY

We first describe the problem that we study, the model that we
have developed, and the rheology of the non-Newtonian fluid.

A. Problem definition and assumptions

We study flow and heat transfer in a heterogeneous porous medium,
fully saturated by a shear-thinning fluid. Thus, we first provide a brief
description of the model, and the assumptions that have beenmade.

• The porous medium is represented by a network of spherical
pore bodies connected by cylindrical pore throats. A disk-shape
geometry in which the thickness is much smaller than the radial
extension of the disk is used. The fluid is injected at the central
point of the disk. The motivation for using the disk-shaped
geometry is that many experimental studies of displacement of
instability were carried out in porous media with such a geome-
try. Thus, we hope that our work with non-isothermal flow of
non-Newtonian fluid will motivate similar experimental studies,
so that the data could be compared with our results.

• Slow fluid flow is assumed, so that Hagen–Poiseuille equation
can be used.

• Initially, the pore network is fully saturated by either a shear-
thinning fluid or by a Newtonian fluid.

• The dynamic viscosity of the fluid depends on both temperature
and the shear rate, while the fluid’s density is temperature-
dependent.

• Heat transfer in both the solid matrix and the pore space is
explicitly taken into account.

• It is assumed that no phase change occurs in the temperature
range that we study.

• Viscous dissipation and radiation are neglected.

B. Generation of pore network

For better visualization, the 3D disk-shaped pore networks with a
radius of 5.0 cm and a height of 0.1mm were generated. The networks
contain about one million pore bodies and four million pore throats
that, to our knowledge, constitute some of the largest PNMs ever used
in such studies. To study the effect of the spatial correlations in the
pore sizes, both uncorrelated and correlated networks were generated,
as shown in Fig. 1. By “homogeneous” we mean that the pores are spa-
tially uncorrelated. That means networks larger than the representative
elementary volume (REV), networks are macroscopically homoge-
neous. The correlated network had a correlation length of 0.25 cm. As
shown by An et al.,27 the maximum correlation length should be about
1/20 of the domain size to guarantee the results are independent of the
generated realization.

The network generation was done by the following steps: (a)
assigning pore bodies’ locations, by randomly generating them using
an on-chip entropy source;55 (b) generating the network by assigning
pore throats, using the Delaunay triangulation method. To reflect the
statistical information of natural porous materials, the average coordi-
nation number—number of pore throats connected to the same pore
body—was controlled by eliminating some of pore throats; (c) generat-
ing a continuous correlated field using a lognormal distribution field
with specific correlation length; and (d) assigning the sizes of pore
bodies and throats by mapping the continuous field onto the pore
network.

C. Pore network modeling

Fluid flow in the pore network was simulated by writing down
the mass balance with given boundary conditions, imposed on the

FIG. 1. The pore-size distribution of (a) spatially uncorrelated and (b) correlated pore networks with (c) the same statistics and similar pore-size distributions. In the correlated
network, the correlation length is 1/20 of the network size.
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network, for each pore unit, defined as the assembly of a pore body
and half-length of pore throats connected to it.

The residual Resi for the mass balance for pore unit i is given by
Ref. 56, with Resi being zero when the mass balance is satisfied,

Resi ¼
Xn
j¼1

qijkij DPij þ 0:5 qi þ qjð Þg zj � zið Þ
� � ¼ 0; (1)

where n is the coordination number of pore body i, kij represents the
flow conductance of throat ij, DPij is the pressure difference between
pore bodies i and j, g denotes the gravity acceleration, zi is the absolute
height of pore body i, qi is the fluid density in pore i, and qij is the den-
sity of fluid in the pore throat, qij ¼ 0:5ðqi þ qjÞ. The density and
temperature of the fluid were assumed uniform in each pore.

Cylindrical shapes were assigned to pore throats. Thus, the hydrau-
lic conductance kij were calculated using the Hagen–Poiseuille equation

kij ¼
pr4ij

8geffij lij
; (2)

where rij and lij represent the radius and length of pore throat ij,
respectively, geffij is the local effective dynamic viscosity of the fluid in
the pore throat, which is a function of the shear rate in pore space, as
well as the temperature, for a non-Newtonian fluid.

The dependence of the fluid’s density on the temperature, Ti, was
assumed to be given by

q Tið Þ ¼ q Trð Þexp b Tr � Tið Þm
� �

; (3)

in which Tr is a reference temperature (usually assumed to be the criti-
cal temperature Tc of the fluid), and b and m are constant coefficients
for a given chemical compound.57

D. Heat transfer

Heat transfer in saturated porous media occurs through both the
fluid and solid phases. While heat transfer in the fluid is due to advec-
tion and diffusion (conduction), it is transferred through only conduc-
tion in the solid phase. For an unstructured 3D network, we propose a
method for calculating the control volume of each control element,
including a pore body, the connected throats, and the solid phase.

The algorithm includes the following steps: (a) each pore body and the
neighboring pores were assumed to constitute a closed tetrahedron
cell, using the Delaunay triangulation method; (b) the volume of the
tetrahedron cells was calculated based on the locations of the con-
nected pore bodies; (c) each cell was divided into four parts, the ratios
of which depend on the volume of connected corner pores; (d) the
control volume of each pore includes all the pieces from various direc-
tions; (e) the local porosity /ij was calculated using the local geometry
as each control volume includes both the solid and void phase, as
shown in Fig. 2(a); and (f) the area of the interface connecting neigh-
boring control volumes was calculated by dividing the throat area by
the local porosity. For a clear illustration, the formation of the control
volume is shown in Fig. 2.

A local thermal equilibrium was assumed in each pore element,
meaning that the temperature of the solid and fluid phases in each
control volume was identical.58 This is a valid assumption if the Biot
number, Bii, is much smaller than 1 in a control volume,

Bii ¼
hc
ksfi

L ¼
cfpq

f
i qiTi

Asf
i DTsf

i ksfi
L; (4)

where hc [W/(m2 K)] is the convective heat transfer coefficient,
ksfi [W/(m K)] is the harmonic-averaged thermal conductivity of the
solid and fluid phase, L (m) is the characteristic length assumed to be
the apparent radius of the control element, cfp [J/(kg K)] is the specific
heat capacity of the flow-in fluid, qf

i is the density of the fluid (kg/m
3),

qi (m
3/s) is the volume flux in the control volume i, Asf

i (m2) is the sur-
face area between the fluid and the solid, Ti (K) represents the temper-
ature of the injected fluid, and DTsf

i (K) is the temperature difference
between the fluid and solid phases.

Under the assumption of local thermal equilibrium, thermal
transport is simulated using the following equations, including thermal
advection and diffusion in the porous media,59

qeff
i Vic

eff
p

DTi

Dt
¼ �

X
qij>0

qf
i jqijjc

f
pTi þ

X
qij<0

qf
j c

f
pjqijjTj

þ
X
j2Ni

Aeff
ij keffij

Tj � Ti

lij
; (5)

FIG. 2. (a) The 2D illustration of a control volume, including the solid and void space. (b) The solid space constrained between the pore throats is divided into three parts in
2D, R1, R2, and R3. The volume of each segment was approximated based on the volume of the connected pores. (c) The 3D graphic presentation of (b).
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where the left side of the equation is the rate of change of energy in
control element i over a time step Dt, while the right side includes
thermal advection by the fluid’s velocity and thermal diffusion in both
the solid and fluid phases. The fluid flux qij was estimated by the
Hagen–Poiseuille equation, representing the volumetric flux from
pore body i to pore body j. Aeff

ij is the cross-sectional area between con-
nected pores, including both solid and fluid parts, while keffij is the
effective thermal conductivity.

The effective density qeff
i , effective heat capacity ceffp , and the

product of the effective thermal conductivity and effective area,
Aeff
ij keffij , were volume-averaged values of the solid and fluid phases

based on the local porosity,22,60

qeff
i ¼ 1� /ið Þqs

i þ /iq
f
i ; (6)

ceffp ¼
1� /ið Þqs

i c
s
p þ /iq

f
i c

f
p

qeff
i

; (7)

Aeff
ij keffij ¼

1� /ij

/ij
pr2ijks þ pr2ijk

f
ij; (8)

where superscripts s and f represent, respectively, the solid and fluid
phases, Aij is the cross-sectional area between the two control volumes
including both the solid and fluid phases, and /ij ¼ ð/i þ /jÞ=2 is
the average porosity of control volumes i and j.

If the Biot number is much larger than one,58 meaning that the
local thermal equilibrium does not hold, two temperature distributions
should be separately calculated for the fluid and solid phases, as shown
by Eqs. (9) and (10),

qf
i Vi/ic

f
p
DTf

i

Dt
¼ �

X
qij>0

qf
i jqijjc

f
pT

f
i

� �
þ
X
qij<0

qf
j c

f
pjqijjTf

j

� �

þ
X
j2Ni

Aijk
f
ij

Tf
j � Tf

i

lij
þ Asf

i ksfi
Ts
i � Tf

i

Ri

 !
; (9)

qs
iVið1� /iÞcsp

DTs
i

Dt

¼
X
j2Ni

Aij
1� /ij

/ij
ksij

Ts
j � Ts

i

lij
þ Asf

i ksfi
Tf
i � Ts

i

Ri

 !
; (10)

ksfi ¼
kfi k

s
i

kfi 1� /ið Þ þ ksi/i

; (11)

where Tf
i and Ts

i are temperatures of the fluid and solid phases in the
control volume i, Ri is the characteristic length of the control volume, Asf

i
is the interfacial area between the fluid and solid phases in control vol-
ume i, and ksfi is the harmonic-average thermal conductivity between the
fluid and solid.61 Note that Dt is the smallest time step, and that apart
from the heat transfer between the neighboring fluid and solid phases,
the heat exchange in each control volume should also be calculated.

In the simulations, the solid phase was assumed to be sandstone,
which is characteristically made of quartz. The density and thermal
properties of sandstone were assumed to be independent of the tem-
peratures, since the properties of sandstone are much less sensitive to
temperature compared with the fluid. The density of sandstone was
taken to be 2323 kg/m3, and its thermal conductivity was assumed to
be ks ¼ 1:6W/(m K), while its heat capacity was 672.62 J/(kg K).62

E. Properties of the non-Newtonian fluid

The viscosity of most shear-thinning and shear-thickening non-
Newtonian fluids exhibits an S-shaped functional dependence on the
shear stress s. Such fluids behave as a Newtonian fluid, with their
viscosity having a plateau at low and high values of s, but a strong
dependence on s in the intermediate regime. The viscosity of
non-Newtonian fluids also varies nonlinearly with temperature. An
equation that describes the S-shaped shear stress and temperature-
dependent viscosity has not been reported in the literature. Thus, we
modified the shear stress-dependent Meter equation to account for the
temperature-dependent viscosity. The proposed equation could be
referred to as thermal Meter equation (TME), Eq. (12), in order to dis-
tinguish it from the original Meter equation,32,63

gðs;TÞ ¼ g1;T þ
g0;T � g1;T

1þ s=sm;T
� �ST ;

g0;T ¼ g0;0e
�BT ;

g1;T ¼ g1;0e
�CT ; (12)

sm;T ¼ sm;0eDT ;

ST ¼ S0eET ;

8>>>>>>>>>><
>>>>>>>>>>:

where gðs;TÞ is the temperature- and shear stress-dependent viscosity
of a non-Newtonian fluid at given shear stress s and temperature T,
g0;T and g1;T are the viscosity of the fluid at zero and infinite shear
stresses, respectively, at temperature T, sm;T is shear stress of the fluid
at a viscosity, ðg0;T þ g1;TÞ=2 at temperature Tm, ST is the shear
stress-dependent exponent at a given temperature, g0;0; g1;0; sm;0,
and S0 are the corresponding values at absolute zero temperature, and
B, C, D, and E are constants.

For a pore throat (i.e., cylindrical tube), the effective viscosity was
calculated based on the following equation:63,64

gðs;TÞ ¼ g1;T þ
g0;T � g1;T

1þ
brij
2sm;T

DPij
lij

 !ST
: (13)

The parameters in Eq. (12) were estimated by fitting the equa-
tions to the experimental data for a given fluid. Then, the fitted param-
eters were used to calculate the effective viscosity using Eq. (13). In
this paper, we simulated the flow of a crude oil65 to study the thermal
transport in flow of a non-Newtonian fluid in porous media. The
dependence of the viscosity of non-Newtonian fluid on the shear stress
at various temperatures was fitted to data using the TME and is shown
in Fig. 3(a).

Change of heat capacity or thermal conductivity of non-
Newtonian fluids (e.g., Xanthan gum solution) can be estimated by
experiments. Otherwise, general empirical equations can be used to
estimate the heat capacity as a function of temperature. The thermal
conductivity of many liquid polymers increases with the increasing
temperature,66 and the increase is estimated based on Eq. (14),

1

cfp

dcfp
dT
� 1:0� 10�3 K�1: (14)

The thermal conductivity of liquid, kf, was estimated using the
Weber equation,67
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kf ¼ 3:56� 10�8cfp
q4

M

� 	1
3

; (15)

whereM represents the molecular weight.
Due to the absence of accurate data, the heat capacity of the crude

oil was assumed to be 2500 J/(kg K) at the temperature of 298K. The
formulation of temperature-dependent heat capacity was derived
based on Eq. (14), as

cfp ¼ 2500e0:001 T�298ð Þ: (16)

In the Weber equation, the molecular weight of the non-
Newtonian fluid was assumed to be 250, while its density being the
same as that of the chosen Newtonian fluid simulated in this paper
(see below).

F. Properties of the Newtonian fluid

We assumed water to be the Newtonian fluid, whose flow and heat
transfer were simulated through the pore space. The heat capacity of liquid
water was assumed to be constant, 4200 J/(kg K), when temperature was
between 273 and 373K. The temperature-dependent density, viscosity,
and thermal conductivity of liquid water were fitted using experimental
data. Based on Eq. (3), the fitted temperature-dependence of water density
was determined to be, as qðTiÞ ¼ 958:35 exp ½0:001328ð373� TiÞ0:7943�.
Using polynomial approximation, we fitted water density to the data, with
the result being

g ¼ 3:40� 10�8T4 � 4:63� 10�5T3 þ 2:37� 10�2T2

� 5:41T þ 465:65: (17)

If the temperature increases from 273 to 373K, the thermal con-
ductivity of water increases slightly, as shown in Fig. 3(b).

The experimental data were fitted using a polynomial approximation,
with the result being

kf ¼4:07�10�8T3�4:91�10�5T2þ2:01�10�2T�2:10: (18)

G. Computational setup and GPU-based acceleration

The spatially correlated and uncorrelated networks, governing
equations for simulation, and properties of fluid and solid phases have
been introduced as aforementioned. The networks were initially satu-
rated by a fluid with temperature of 298K. For boundary conditions,
the fluid with temperature of 373K was injected at the center of the
radial domain with constant flow rates, and the pores at outlet were
assumed to be at atmospheric pressure. The flow simulation, heat
transfer, and updating of the parameters, such as the density, viscosity,
and thermal properties, were iteratively carried out. At time t, the
temperature-dependent properties of the fluid were updated for the
flow simulation. The computed pressure field was then utilized to
update the viscosity in order to re-calculate the velocity field until the
governing equations converged at time t. Then, time was increased by
time step Dt and heat transfer was simulated using Eq. (5) or Eqs. (9)
and (10) to update the temperature field at time t þ Dt.

To accelerate the computational speed and enlarge the simulation
domain, flow and heat transfer simulations were fully parallelized using
the GPU-CUDA technology.68,69 A GPU-based linear solver based on
Jacobi preconditioned conjugation gradient method was adopted to solve
the mass balance equations, Eqs. (1) and (2).27 The governing equations
for heat transfer through the porous medium were explicitly solved by
allocating each element’s equations into distinct threads. All the calcula-
tions were carried out on NVIDIA Tesla v100 GPU card, which had
5120 CUDA cores with 1380MHz clock frequency, 900 GB/s memory
bandwidth, and 32 GB of global memory.

FIG. 3. (a) The relation between viscosity and the shear stress of the crude oil at various temperatures. The symbols represent the experimental data, while the curves are the
resulting fits. (b) Temperature dependence of viscosity and thermal conductivity of water. Polynomial equations were fitted to the experimental data.
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III. RESULTS AND DISCUSSIONS
A. Flow properties of the pore network

An uncorrelated network and a correlated one with a correlation
length of 0.25 cm (1/20 of the system’s radius) were generated. The
absolute permeability of the uncorrelated and correlated networks
were computed to be 0.25 and 0.41D, respectively, calculated based on
Eq. (19),

Q ¼ 2pkh
geff ln Rout=Rinð ÞDP; (19)

where Q is the volume flow rate, geff is the effective viscosity, Rout and
Rin are the radii of inlet and outlet boundaries, respectively, h is the
height of the sample, and DP is the pressure difference between the
inlet and outlet.

The ratio of the thermal advection to diffusion (conduction) is
referred to as P�eclet number, defined as Eq. (20). The P�eclet number
was calculated under the initial temperature of 298K,

Pe ¼ uL
a
¼

QðRout � RinÞqeff c
eff
p

2pRouth/keff
; (20)

where u ¼ Q=ð2phRout/Þ is the characteristic velocity at the outlet.
Note that in a radial system, such as one that we utilize, and with
a constant injection rate, the radial velocity decreases with the
distance from center. L ¼ Rout � Rin is the characteristic length, and
a ¼ k=ðqcpÞ is the thermal diffusivity. The averaged thermal diffusiv-
ity for bulk system was determined in as manner similar to
Eqs. (6)–(8) using the porosity of the network.

B. Local thermal equilibrium vs non-equilibrium
conditions

As already pointed out, the assumption of local thermal
equilibrium is valid when the Biot number is much small than one.58

As Eq. (4) indicates, the Biot number is directly proportional to the
flow rate. At the highest flow rate that we simulated, 10.0mm3/s, we
analyzed the distribution of local Biot number for each control volume
for both Newtonian and non-Newtonian fluids in both correlated and
uncorrelated networks. To calculate the Biot number under dynamic
conditions, the thermal properties at the initial temperature were uti-
lized to compute the velocity field. The temperature difference was
taken to be the difference between the inlet and initial temperatures.

As shown in Fig. 4(a), a very small group of local Biot numbers
are larger than 1, implying that the assumption of local thermal equi-
librium is valid in all the simulations carried out. To assess further the
impact of equilibrium assumption, using Eq. (5), on the upscaled
behavior, non-Newtonian fluid flow in a spatially uncorrelated net-
work at the highest volume flow rate was also simulated and compared
with the non-equilibrium case, using Eqs. (9) and (10). The spatial
temperature distribution and the dependence of the average tempera-
ture on the distance from center for the two cases at the breakthrough
time are plotted in Fig. 4(b), which indicate almost identical fingering
patterns and average cross-sectional temperature. Thus, in all the sim-
ulations, we assumed local thermal equilibrium.

For validation, to our knowledge, there is no experimental or the-
oretical work in literature for transient non-isothermal flow of a non-
Newtonian fluid through porous media in the literature, presumably
due to experimental complexities. Therefore, we validated the model
with isothermal non-Newtonian fluid flow experiments, as reported in
Appendix A. The results there demonstrate that the pore-network
model is capable of upscaling the rheology of fluid from bulk rheology
to porous media rheology. To further validate the model under non-
isothermal conditions, we propose an analytical solution for the loca-
tion of thermal front in a spatially uncorrelated pore network in order
to compare the front from the numerical simulation, as shown in
Appendix A. The dispersion was not considered in the analytical equa-
tion. Then, the effects of unstructured topology and heat transfer in
solid phase were analyzed in Appendixes B and C.

FIG. 4. (a) The distribution of local Biot numbers for the Newtonian (water) and non-Newtonian fluid (crude oil) under a flow rate of 10.0 mm3/s in spatially homogeneous and
heterogeneous networks. (b) The comparison of thermal patterns and average temperature under equilibrium [Eq. (5)] and non-equilibrium [Eqs. (9) and (10)] conditions for
the non-Newtonian fluid.
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C. Effect of hydrodynamics and spatial heterogeneity
on thermal fingering

We now present the results of our study of the effect of several
factors on heat transfer in porous media, including (a) the flow rate
(which is tantamount to varying the P�eclet number), (b) Newtonian vs
shear-thinning fluids, and (c) spatial heterogeneity by comparing the
results for a spatially homogeneous network with those for a spatially
correlated network but with same pore-size statistics.

To visually demonstrate and quantitatively analyze the results, all
the analyses were carried out at the temperature breakthrough point,
defined as the state when the temperature at the outlet is higher than its
initial value. Flow rates of 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1.0, 2.5, 5.0, and
10.0mm3/s were utilized in all the simulations. For water, these flow
rates represented the P�eclet numbers of 0.016, 0.082, 0.16, 0.41, 0.82,
1.23, 1.64, 4.11, 8.22, and 16.45, respectively. For the non-Newtonian
fluid, based on the values of density, heat capacity and conductivity at
the temperature of 298K, the corresponding P�eclet numbers were
0.026, 0.13, 0.27, 0.67, 1.33, 2.0, 2.67, 6.67, 13.36, and 26.72, respectively.

1. Newtonian fluid in a spatially homogeneous porous
medium

As shown in the first row of Fig. 5(a), the temperature patterns
at the breakthrough points are similar, in all directions, from the
center to the outlet boundary for all the aforementioned flow rates.
The reason is twofold: (a) the fluid is Newtonian, i.e., its viscosity is
not sensitive to the shear stress and temperature, and (b) the
medium is homogeneously random and no clear pathway was gener-
ated by the permeability field. With the increase in flow rate (i.e.,
increasing P�eclet number), the transition front from maximum to
minimum temperature becomes sharper due to the high intensity of
advective transport. The radially averaged temperature vs distance
from the center to the outlet boundary at the breakthrough point
was calculated, as shown in Fig. 5(b). When the thermal transport is
dominated by diffusion, i.e., low P�eclet number, for example, an
injection flow rate of 0.01mm3/s, the temperature gradually
decreases from the center toward the outlet, but the decreasing rate
drops with the distance.

FIG. 5. (a) The thermal patterns at the breakthrough points of four cases, namely, Newtonian fluid in the uncorrelated porous medium, non-Newtonian fluid in the uncorrelated
porous medium, Newtonian fluid in the correlated porous medium, and non-Newtonian fluid in the correlated porous medium under various injection flow rates. (b) The radially
averaged temperature from the inlet (center) to the outlet vs distance from the inlet.
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2. Shear-thinning fluid in a homogeneous porous
medium

The second row of Fig. 5(a) shows the temperature field at the
breakthrough point in the non-Newtonian shear-thinning fluid in the
uncorrelated network (identical to the first row). Clearly, the decrease
in the viscosity of the fluid associated with the increased temperature
and shear rates generated thermal fingering. For flow rates smaller
than 0.1m3/s, the thermal patterns are identical for both Newtonian
and non-Newtonian fluid flow, since thermal diffusion governs heat
transfer which is independent of the shear rate. When the flow rate is
larger than 0.1m3/s, the effect of flow rate becomes clear as the fluid
viscosity changes with the shear rates and thermal dispersion increases
as well. Since the nature of the network in this case was spatially
homogeneous, thermal fingering was generated in all directions.

3. Newtonian fluid in a heterogeneous porous medium

The third row of Fig. 5(a) indicates that thermal fingering in flow
of the Newtonian fluid through a heterogeneous (spatially correlated)
network is far more visible than the homogeneous case. Due to the
spatial correlation, clusters with large pores are connected together to
generate the preferred paths for flow. Advection begins to control heat
transfer when the injection flow rate is larger than 0.1m3/s, which
results in the thermal fingering front. The radially averaged tempera-
ture along the radius shown in Fig. 5(b) indicates that the heterogene-
ity clearly enhances the spreading of the temperature, and that even at
high flow rates, it is not possible to get a sharp transition in the tem-
perature profile.

4. Shear-thinning fluid in a heterogeneous porous
medium

Finally, the fourth row of Fig. 5(a) presents the combined effect
of shearing-thinning behavior and porous medium’s heterogeneity on
the temperature profile at the breakthrough point. The synergy of
morphological heterogeneity and shear-thinning nature of fluid gener-
ated much clearer thermal fingering than the three previous cases.
When the injection flow rate is smaller than 0.1m3/s, the transition
from high to low temperature is smooth, with slight heterogeneity
near the inlet. With the increasing flow rate (i.e., increasing effect of
advection), the thermal fingering pattern becomes more pronounced,
especially for injection flow rates larger than 1.0m3/s. Clearly, the
shear-thinning behavior of the fluid, together with the heterogeneity
enhance thermal fingering. Clusters of large pores in the correlated
field generate the preferred flow and transport paths and, thus, the
fluid has a higher velocity in such preferential pathways, which leads
to reduction of fluid viscosity and enhancement of advective heat
transfer. Thus, one expects shear-thickening fluid to behave
completely differently and reduces the impact of the heterogeneity on
thermal fingering, which is briefly studied in Appendix E. Therefore,
using shear-thickening fluids, one can control thermal transport fin-
gering in heterogeneous porous media.

Both morphological heterogeneity and shear-thinning nature of
the fluid enhance thermal fingering in porous media. The thermal fin-
gering patterns due to the two principal factors are, however, different.
In the uncorrelated network, thermal fingering resulting from viscosity
variations of the fluid has a more smooth front and is randomly

distributed in all directions. The heterogeneity-based thermal fingers,
on the other hand, have preferred directions due to the structure of
geometry. To quantitatively describe the complexity of the thermal
morphology, the fractal dimension of thermal fronts was calculated
using the box-counting method.70,71 At the temperature breakthrough
time, the fractal dimension of the thermal front was calculated. The
depth was not considered in estimating the fractal dimension. As
shown in Fig. 6, the fractal dimension decreases with the increase in
the injection rate. For heat transfer in the Newtonian fluid through the
uncorrelated network, the fractal dimension decreases slightly with the
flow rate, and all the values are close to 2. The fractal dimensions for
the other three cases have a more notable decrease. Note that the frac-
tal dimension of thermal fingers is the smallest for the shear-thinning
fluid in the correlated network.

The link between the microscale phenomena, such as the fingering
pattern, and microscale heterogeneity with the upscaled properties can
be made through the apparent viscosity, a lumped parameter that is sig-
nificant for practical reasons. The average temperature and apparent vis-
cosity of the Newtonian fluid for the entire domain at the breakthrough
time were calculated and shown in Fig. 7(a). The same was also calcu-
lated for the non-Newtonian fluid and shown in Fig. 7(b). For the
Newtonian fluid, the relation between the average temperature and the
flow rate exhibits an S-shape, ranging from diffusion-dominated to
advection-dominated thermal transport. Correspondingly, the effective
viscosity at the breakthrough point decreases with the increasing flow
rate (hence, the increased average temperature and shear rate).

For the non-Newtonian fluid in the spatially homogeneous net-
work, shown in Fig. 7(b), the average temperature correlates positively
with the flow rate up to 1.0m3/s, after which the average temperature
slightly changes with the increase in flow rate. For the flow rates larger
than 1.0m3/s, heat transfer is advection-dominated. Hence, a further
increase in the flow rates slightly enhances the broadness of the shear
stress distribution in the pore space, and thus, the fingering would be
enhanced slightly. Due to increased advection, the radially averaged
temperature, shown in Fig. 5(b), also indicates that the location of the
transition front decreased with the increasing flow rate lower than

FIG. 6. Variation of the fractal dimension of the thermal front on the flow rate at the
temperature breakthrough time. The network characteristics and shear-thinning
properties are shown in Figs. 1 and 3, respectively.
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1.0m3/s, due to the increased advection. A wider front is, however,
observed for flow rates larger than 1.0m3/s. Correspondingly, the
apparent viscosity at the breakthrough point decreases with the
increasing flow rate up to 1.0m3/s. Afterward, the apparent viscosity is
affected only weakly by the flow rate, due to limited spatial variability
of the local viscosity.

The effect of spatial heterogeneity on average temperature is not
significant at small flow rates, which is the diffusion-dominated region
of thermal transport. With the formation of fingers at higher rates,
however, the difference between average temperature in the spatially
homogeneous and heterogeneous porous media is significant.
Contrary to the aforementioned and described S-shape profile for the
Newtonian fluid, the dependence of the average temperature and
apparent viscosity on the flow rate exhibits non-monotonic behavior,
shown in Fig. 7(b). By increasing the injection flow rate from 0.01 to
0.75m3/s, advection is enhanced but the diffusion still plays an impor-
tant role by making the thermal pattern more uniform. In this range,
the average temperature at the breakthrough point increases with the
increasing flow rate. For flow rates larger than 0.75m3/s, thermal
transport is controlled by advection, giving rise to specific thermal pat-
terns. Moreover, increasing flow rate results in a further heteroge-
neous, fractal-like thermal pattern due to shear thinning.
Correspondingly, the apparent viscosity reaches its lowest value at
around the flow rate of 0.75m3/s. The transition length from the maxi-
mum temperature to the minimum value, shown in Fig. 5(b), becomes
shorter with the increasing flow rate but smaller than 0.75m3/s, and
then becomes longer because of the more nonuniform pattern of flow
rates larger than 0.75m3/s.

To demonstrate the variations of shear stress and viscosity of the
non-Newtonian fluid at pore-scale, their statistical distribution at the

breakthrough time for injection flow rates, ranging from 0.01 to
10mm3/s, are shown in Fig. 8. Figure 8(a) indicates that the shear
stress of the non-Newtonian fluid increases with the increasing injec-
tion rate, as expected. The difference between the spatially homoge-
neous and heterogeneous networks in terms of shear distribution is
not significant, especially when the injection flow rate is less than
0.1mm3/s. On the other hand, heat transfer is significantly influenced
by the injection flow rate and the structure of the network, which led
to a significant variation in the pore-scale viscosity under various con-
ditions, as shown in Fig. 8(b). For an injection flow rate of 0.01mm3/s,
the smooth temperature pattern results in a monomodal distribution
of the viscosity, regardless of the network heterogeneity. When the
advective transport becomes significant (with injection flow rate larger
than 0.1mm3/s), a bimodal distribution of the pore-scale viscosity is
developed. The small-viscosity peak represents the reduced viscosity
due to the increased temperature and shear stress. The high-viscosity
peak represents those parts of the domains that do not experience
increased temperature. With the increasing flow rate, the population
of the intermediate pore-scale viscosities between two peaks decreases
in size due to the decreasing ratio of the pores with transitional tem-
perature (between the highest and lowest temperatures). Thus, the
results imply that in such circumstances, the effect of temperature on
the viscosity is much stronger than the corresponding effect of shear-
thinning rheology for the chosen fluid properties and flow conditions.
Further details are given in Appendix D. In the heterogeneous pore
space, the fraction of pores with lower viscosities is smaller than that
in the homogeneous network, which is caused by the stronger thermal
fingering.

Our results imply that in the presence of heterogeneity and for a
shear-thinning fluid, for applications, such as thermal enhanced oil

FIG. 7. The average temperature and effective viscosity at the breakthrough point for (a) the Newtonian fluid and (b) the non-Newtonian fluid in uncorrelated and correlated
networks with various injection flow rates.
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recovery, it is important to design the injection flow rates in a way that
thermal fingering is minimized and a lower effective viscosity, similar
to what Fig. 7(b) indicates, is achieved.

IV. CONCLUSIONS

To study the thermal-viscous fingering instability in porous
media, a pore network model and a computational algorithm were
proposed in order to simulate time-dependent thermal transport in
flow of a non-Newtonian fluid through 3D unstructured networks at
centimeter level with millions of pores.

Both spatially uncorrelated and correlated pore networks in a
radial geometry were generated with identical pore-size distributions
and topological structures. We also proposed a method for calculating
the control volume of each pore body in the 3D unstructured net-
works. For the non-Newtonian fluid, a thermal Meter equation was
proposed to express the relation between the viscosity and shear stress
under varying temperatures. We then simulated the dynamics of cou-
pled fluid flow and thermal transport for both Newtonian and non-
Newtonian fluids under the assumption of local thermal equilibrium.
A simple analytical model, based on the energy balance, for the posi-
tion of thermal front in the radial geometry was also proposed. The
fully GPU-parallelized algorithm made it possible to quickly carry out
the simulation of thermal transport.

We analyzed the effect of the injection flow rate and heteroge-
neous morphology of the pore space on thermal transport and the
resulting patterns for both Newtonian and non-Newtonian fluids.
After comparing the thermal front obtained by numerical simulation
with the predictions of the analytical model in a spatially uncorrelated
network, the thermal patterns at the breakthrough point were analyzed
for the Newtonian fluid, assumed to be water, and a crude oil that rep-
resented the non-Newtonian fluid, in both spatially heterogeneous and
homogeneous porous media. Both the structural heterogeneity and the
non-Newtonian nature of the fluid result in thermal-viscous fingering
instability. The thermal fingers due to the heterogeneity have a pre-
ferred direction, reflecting the geometrical structure. Thermal finger-
ing in the uncorrelated network due to the non-Newtonian rheology
of the fluid and its associated shear rate-dependent viscosity propagate
in all directions and with a smoother front. The fractal dimension of

the thermal fronts indicates that the two phenomena enhance each
other. For the flow of the Newtonian fluid in all networks as well as
the non-Newtonian fluid in the spatially uncorrelated network, the
dependence of the average temperature at the breakthrough point on
the injection flow rate exhibits an S-shape form. For flow of a non-
Newtonian fluid through a correlated porous medium, the average
temperature and the apparent viscosity follow non-monotonic depen-
dence on increasing injection flow rates.
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APPENDIX A: VALIDATION AGAINST EXPERIMENT
AND ANALYTICAL MODEL

For validation, to our knowledge, there is no experimental
work in the literature that reports on transient non-Newtonian fluid
flow under non-isothermal conditions, presumably due to experi-
mental complexities. There have, however, been some experimental
studies that were focused on isothermal non-Newtonian fluid flow

FIG. 8. The probability density functions of the pore-scale properties for injection flow rates from 0.01 to 10 mm3/s at the breakthrough points, for (a) the shear stress, (b) vis-
cosity in the spatially homogeneous network, and (c) viscosity in the heterogeneous network.
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through porous media. Thus, we validated our model with the
experimental data reported in Eberhard et al.72 The porous medium
was made of packed monodisperse spherical beads.

The network was extracted from the generated packed bed,
shown in Fig. 9(a). To accurately fit the absolute permeability of the
bead packing using the pore-network model, the pore sizes were
increased by a factor of 1.07. The measured bulk rheology was fitted
using the TME as shown in Fig. 9(b). With the bulk rheology data and
pore-network morphology, the non-Newtonian fluid flow in the pore
network was simulated under isothermal condition using various
injection rates. As a result, we established the relation between the
Darcy velocity and effective viscosity of the non-Newtonian fluid flow
through the porous medium and compared the results with experi-
mental data as shown in Fig. 9(c). The results clearly demonstrate that
the model is capable of reproducing the experimental data.

Given that we perform simulation for non-isothermal condi-
tions, we wish to demonstrate the effect of heat exchange between
the solid and the fluids and the change of rheology due to the non-
isothermal effects. Thus, we propose a simplified analytical solution
for the location of thermal front, by excluding dispersion, in a spa-
tially uncorrelated pore network in order to compare the front com-
pared by the numerical simulation, as shown in Appendix A. The
energy balance was checked for all the simulations by comparing
thermal energy entering and leaving the system, i.e., Ein � Eout, vs
additional internal energy Eadd in the entire domain X,

DE ¼ Ein � Eout ¼
ðt
0
Qinqf c

f
pðTin � ToutÞdt; (A1)

Eadd ¼
X
i2X
ð1� /iÞViqsc

s
p þ /iViqfic

f
pi

h i
ðTi � T0Þ: (A2)

The quantitative relative error was less than 0.01% for energy
balance in all the simulations. Additionally, for further assessment,
an analytical expression for thermal front, Eq. (A4), is proposed to
compare its prediction against the simulation results. To be able to
use the analytical expression, the densities and heat capacities of the
fluids and the solid phase were assumed to be constant (values
taken at 298K).

The energy storage capacity of the water-saturated network
was calculated based on

Ctol ¼ ð1� /ÞVqsc
s
p þ /Vqf c

f
p: (A3)

We set the constant boundary flux at Qin¼ 10.0mm3/s at the
inlet boundary (center of the system). The initial temperature of
the porous medium was 298 K, and the injected fluid had a con-
stant temperature of Tin¼ 373 K. The temperature of system near
the inlet boundary quickly increased to 373K. Thus, the energy
contributed by diffusion between the injected fluid and the inlet
pore units was ignored, meaning all the in-flow energy (Ein) in the
domain is due to convection. The energy adding rate, defined as
the difference between in-flow and out-flow energy (Eout), was cal-
culated using Eq. (A1). Assuming a sharp thermal front in the spa-
tially homogeneous porous medium, the front location is
calculated by

Lf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DE
CtolðTin � T0Þ

R2
out � R2

in

� �
þ R2

in

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qinqf c

f
pt

ð1� /ÞVqscsp þ /Vqf c
f
p

R2
out � R2

in

� �
þ R2

in

vuut ; (A4)

FIG. 9. (a) A randomly packed bed of monodisperse spherical beads and extracted pore network. Details about the sample can be found in Eberhard et al.,72 (b) fitted rheology
using modified meter model (MMM), and (c) a comparison between simulation results and experimental data.
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where Lf represents the front location (radial distance from the cen-
ter), and / and V represent the porosity and bulk volume of the
network, respectively.

The porosity of the uncorrelated network was about 0.184. Therefore,
the energy storage capacity of the water-saturated network, Ctol, turned out
to be 1.61 J/K. So long as the temperature of the outlet pores was higher
than the initial temperature (Tout¼ 298K), we had DE¼ 3.15 J/s. For the
uncorrelated network, the front locations were calculated using Eq. (A4) at
a given time, represented by the vertical solid lines in Fig. 10(b). Since the

porous media have a distribution of the pore sizes, they lead to a distribu-
tion of advective force and thermal dispersion. Thus, the temperature pro-
files in porous media are not similar to a step function. The middle point
of the smeared front represents the purely advective heat transfer (without
dispersion) that is presented in Fig. 10(b). With the same boundary condi-
tions as before, we simulated the flow of crude oil and heat transfer in the
identical uncorrelated network. As shown in Fig. 10(c), the transition front
for the crude oil with shear-thinning properties is much longer than that
of water. We also estimated the average front location by Eq. (A4), shown

FIG. 10. Dynamic evolution temperature in (a) the Newtonian and (c) non-Newtonian fluids. The performance of the analytical expression for purely advective heat transfer
based on Eq. (A4) (vertical lines) is compared with the average front temperature obtained by simulations for (b) Newtonian and (d) non-Newtonian fluids.

FIG. 11. (a) The structured and uncorrelated networks, (b) the unstructured and uncorrelated network, (c) the structured and correlated network, and (d) the unstructured and
correlated network.
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as the vertical lines in Fig. 10(d). Clearly, the analytical equation failed to
accurately predict thermal fingering in non-Newtonian heat transfer in the
porous medium studied.

APPENDIX B: COMPARISON OF THERMAL
FINGERING IN 3D STRUCTURED AND
UNSTRUCTURED NETWORKS

To compare the effect of a structured and unstructured mor-
phology on heat transfer in flow through the pore networks, we
generated both networks with volume of 1 cm3. The spatial

correlation length in the correlated network was 1/20 of its linear
size, as shown in Fig. 11. The uncorrelated networks, shown in
Figs. 11(a) and 11(b), had identical pore-size distribution pattern.
The radius of correlated networks, shown in Figs. 11(c) and 11(d),
are also assigned based on the same radius field. To guarantee that
heat transfer is simulated in the networks with the same absolute
permeability, the pore sizes of the structured network were re-
scaled using a scaling factor of 0.91. The absolute permeabilities of
uncorrelated and correlated networks were 138 and 145 mD,
respectively. The thermal pattern and average distribution of tem-
peratures were analyzed for four networks saturated with the

FIG. 12. Temperature distribution at the breakthrough time in networks with an injection flow rate of 10.0 mm3/s, corresponding to the cases shown in Fig. 11.

FIG. 13. The temperature distribution at breakthrough time in the spatially correlated network under flow rate of 10.0 mm3/s with heat transfer (a) in both solid and fluid phases
and (b) only in fluid phase. (c) The comparison of the local viscosity distribution in the two systems.
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non-Newtonian fluid, shown in Fig. 12. Although the structured networks
could produce qualitatively the temperature patterns, the upscaled proper-
ties do have clear difference with those of the unstructured networks, espe-
cially the change between uncorrelated and correlated networks.

APPENDIX C: EFFECT OF SOLID PHASE ON HEAT
TRANSFER

To indicate the importance of accurate simulation of heat
transfer between the fluid and solid phases, we compare the simula-
tion results with and without heat transfer in the solid phase, as
shown in Fig. 13. Based on the temperature field at the break-
through time, we conclude that heat transfer only in the fluid phase

fails to predict the dynamic thermal front, as the heat capacity and
conductivity are highly dependent on the solid ratio of each control
volume.

APPENDIX D: EFFECT OF TEMPERATURE- AND
SHEAR-DEPENDENT VISCOSITY ON THERMAL
FINGERING

For the non-Newtonian fluid, the effect of temperature- and
shear-dependent viscosity on thermal fingering was studied with an
injection flow rate of 1.0mm3/s. The comparison indicates that the
effect of temperature on thermal fingering is much stronger than
the rheology of the shear-thinning fluid under the flow conditions
that we simulated, Fig. 14.

FIG. 14. (a) Rheology of the non-Newtonian fluid under the temperature of 298 K, and the distribution of the local shear stress with an injection flow rate of 1.0 mm3/s. (b) The
comparison of the local viscosity distribution under three conditions, namely, (1) the temperature- and shear-dependent viscosity, (2) the shear-dependent viscosity under the
temperature of 298 K, and (3) the temperature-dependent viscosity ignoring shear-thinning property.

FIG. 15. Temperature fields and the distribution of local shear stress and viscosity in pore throats of (a) shear-thinning fluid and (b) shear-thickening fluid.
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APPENDIX E: COMPARISON BETWEEN SHEAR-
THINNING AND SHEAR THICKENING FLUID

In the present work, the results are based on a shear-thinning
fluid. We anticipate that the rheology of shear-thickening fluids
should reduce the impact of the heterogeneity on thermal fingering.
Thus, we simply generated two inverted rheologies and simulated
heat transfer in two fluids, assuming that the viscosity is dependent
on the shear stress. The temperature fields and corresponding dis-
tributions of local shear stress and viscosity are shown in Fig. 15.
The average temperature under the conditions of Fig. 15(a) is
324.9 K, and 330.4 K for Fig. 15(b). The fields are binarized using a
threshold of median temperature. Then, the fractal dimension was
calculated for the binary images, obtaining 1.891 and 1.922, respec-
tively. Thus, the simulations indicate that shear-thickening rheology
weakens the fingering.
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