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Abstract
The Meter model (a four-parameter model) captures shear viscosity–shear stress relationship (S-shaped type) of polymeric
non-Newtonian fluids. We devise an analytical solution for radial velocity profile, average velocity, and volumetric flow
rate of steady-state laminar flow of non-Newtonian Meter model fluids through a circular geometry. The analytical solution
converts to the Hagen–Posseuille equation for the Newtonian fluid case. We also develop the formulations to determine
effective viscosity, Reynolds number, and Darcy’s friction factor using measurable parameters as available rheological
models do not correctly define these parameters for a given set of flow condition in circular geometry. The analytical
solution and formulations are validated against experimental data. The results suggest that the effective Reynolds number
and effective friction factor estimated using the proposed formulation help characterize non-Newtonian fluid flow through a
circular geometry in laminar and turbulent flows.

Keywords Non-Newtonian fluid · Shear stress · Viscosity · Analytical solution · Shear-thinning fluid · Reynolds number ·
Micro-capillary fluid flow

Introduction

The laminar flow of a non-Newtonian fluid (described
using generalized Newtonian fluid model) through a circular
capillary/tube has broader engineering application (e.g.,
polymer fluid flow through pipes in industrial settings (Bird
et al. 1987), capillary bundle model of porous media (Savins
1969), pore-network model (Sochi and Blunt 2008)).
Among generalized Newtonian fluid models (Yilmaz and
Gundogdu 2008), Cross (Cross 1965), Carreau (Yasuda
1979), Carreau–Yasuda (Yasuda 1979), Meter (Meter and
Bird 1964; Meter 1964; Savins 1969; Tsakiroglou 2002;
Tsakiroglou et al. 2003; Tsakiroglou et al. 2003), and
Steller–Ivako (Steller and Iwko 2018) models can predict
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S-shaped rheological properties (i.e., constant viscosity at
low and high shear values and decreasing viscosity at
intermediate shear values) of many shear-thinning fluids.

Attempts have been made by many investigators to obtain
an analytical solution for flow of non-Newtonian fluid
through a circular tube. Matsuhisa and Bird derived an
analytical solution for the laminar flow of a fluid obeying
shear stress–dependent Ellis model (Matsuhisa and Bird
1965). Meter and Bird proposed the analytical solution for
the flow of shear stress–dependent Meter model fluid in
a circular capillary if η∞

η0
is very small. Here, η0 and η∞

are zero and infinite shear viscosity, respectively (Meter
and Bird 1964). Although Sochi (2015) and Kim (2018)
proposed analytical solutions for Carreau and Cross fluid
flow through a circular tube and Peralta et al. (2014,
2017) proposed analytical solution for flow over free-
draining vertical plate, the exact analytical solution is
absent for estimation of the radial velocity profile, average
velocity, and volumetric flow rate of fluid flow in a circular
tube/micro-capillary obeying Cross, Carreau, Meter, or
Steller–Ivako model.

The Reynolds number of non-Newtonian fluids in a
circular tube/capillary is commonly defined using the
viscosity of the fluid at the wall (Escudier et al. 2005;
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Kim 2018), the zero-shear viscosity (Ferrás et al. 2020), or
Metzner and Reeds equation (Metzner and Reed 1955). The
shear viscosity of non-Newtonian fluids varies along the
radial direction in a fully developed circular capillary. Thus,
zero shear viscosity or the viscosity of the fluid at the wall
is not the representative viscosity or the effective viscosity
of fluid flow. Metzner and Reeds equation is applicable for
purely power-law fluid.

The effective viscosity of the fluid is analogous to the
average velocity of the fluid. Both vary spatially during
fluid flow in the circular capillary. Thus, similar to the
average velocity value, the effective viscosity value is a
single representative viscosity value for fluid flow under a
given set of conditions. Sadowski and Bird (1965) defined
the effective viscosity of the Ellis model fluid, as in Eq. 1,
based on the exact analytical solution for the flow of the
Ellis model fluid in the circular capillary:

1

ηeff
= 1

η0

⎛
⎝1 + 4

α + 3

(
τw

τ 1
2

)α−1
⎞
⎠ (1)

here, ηeff is the effective viscosity of the fluid, η0 is the
zero shear viscosity, α is an exponent, τ 1

2
is the critical

shear stress parameter, and τw is the wall shear stress.
The effective viscosity helps define the Reynolds number
and Darcy’s friction factor. Furthermore, effective viscosity
helps upscale shear viscosity from pore scale to Darcy
scale (Savins 1969; Sadowski and Bird 1965; Balhoff and
Thompson 2006; Duda et al. 1983; Eberhard et al. 2019)
during the flow of polymeric fluid in the porous media.
Effective viscosity and the exact analytical solution are
useful in developing pore-network models for the flow of
non-Newtonian fluids in porous media (Sochi and Blunt
2008). The pore-network model for non-Newtonian fluid
has wider engineering and industrial applications, e.g.,
it helps understand the complex interaction of the non-
Newtonian fluids with tortuous and heterogeneous porous
media at pore scale.

A formulation to define an effective viscosity (ηeff) of
non-Newtonian fluids (having S-shaped type rheology) for
a given flow condition using measurable parameters is
absent in the literature. Absence of an analytical solution
to estimate the average velocity of Cross and Carreau fluid
makes correlating Reynolds number with Darcy’s friction
factor arduous.

To address the above discrepancy, we obtain an exact
analytical solution for flow of a Meter model fluid through
circular geometry. The analytical solution of the Meter
model (MM) helps define effective viscosity, Reynolds
number, and friction factor of non-Newtonian fluid flow
using measurable parameters.

Mathematical formulation

The Cauchy momentum equation describes momentum
transfer in any continuum. The state of stress at any point in
the continuum (i.e., normal stresses, σn, and shear stresses,
τ ) is defined using Cauchy’s stress tensor (σ ). For an
incompressible fluid, divergence of Cauchy’s stress tensor is
∇·σ = −∇P +∇·τ , where ∇P is the pressure gradient and
τ is the deviatoric stress tensor. The constitutive equation
of generalized Newtonian fluid (GNF) defines viscosity
of the fluid as a non-linear function of second invariant
of either rate-of-deformation tensor (i.e., τ = 2 η(γ̇ )D)
(Bird et al. 2007) or deviatoric stress tensor (i.e., τ =
2 η(τ)D) (Meter and Bird 1964; Steller and Iwko 2018;
Peters et al. 1999; Matsuhisa and Bird 1965). Here, D =
1
2 γ̇ = 1

2 (∇u + (∇u)T ), the magnitude of shear rate is

|γ̇ | =
√

γ̇ : γ̇

2
(Bird et al. 2007), the magnitude of shear

stress is |τ | =
√

τ : τ

2
(Meter and Bird 1964), and u is

velocity vector. The constitutive equations for commonly
used shear rate–dependent and shear stress–dependent GNF
models are given in Table S1 of the Supporting Information
(SI).

The intermolecular and interparticle interactions in the
fluid generate stresses (i.e., normal and shear stresses).
These stresses govern the flow properties of the non-
Newtonian fluids, including the viscosity of fluids. Thus,
the stress-based model shall be adopted to describe the
physics behind non-Newtonian fluid flow through void
spaces. Meter (Meter and Bird 1964) proposed his model
in 1964 to describe S-shaped type rheology of a non-
Newtonian fluid. The Meter model is a modified version
of the Ellis model (Bird and Carreau 1968), and Reiner-
Philippoff model (Reiner 1930; Philippoff 1935) which
were independently proposed in 1927, 1930, and 1935,
respectively; thus, it could also be renamed as the truncated
Ellis-Reiner-Philippoff model.

The Meter model (Eq. 2) gives viscosity of a non-
Newtonian fluid in terms of shear stress as follows (Meter
and Bird 1964):

η = η∞ + η0 − η∞

1 +
(

τ

τm

)α−1
(2)

here, η (Pa·s) is the shear viscosity at a given shear stress
(τ ); η0 (Pa·s) is the viscosity at the zero shear stress (i.e.,
zero shear viscosity); η∞ (Pa·s) is the viscosity at the
infinite shear stress (i.e., infinite shear viscosity); τm (Pa)
is the critical shear stress of the non-Newtonian fluid at
which viscosity of the solution drops to η0+η∞

2 ; α is the
shear stress-dependent exponent of the Meter model. η0,
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η∞, and τm are measurable quantities of the non-Newtonian
fluid. Here, we slightly modify the denotation of the Meter
model by replacing α − 1 with S; where, S is the shear
stress-dependent exponent of the Meter model (MM). The
characteristic time (λ) of the MM (Eq. 3) is a time at
which fluid transition from Newtonian behavior (zero shear
viscosity) to shear thinning or shear thickening behavior
(i.e., at τm) occurs.

λ = η0 + η∞
2 τm

(3)

The shear rate of MM is

γ̇ = τ

η∞ + η0−η∞

1+
(

τ

τm

)S

(4)

We note that Eq. 4 applies to the Newtonian fluid (if
η0 = η∞, S = 1, τm = 1), shear-thinning fluid (if η0 > η∞,
S > 0, τm > 0), and shear-thickening fluid (if η0 < η∞,
S > 0, τm > 0).

Analytical solution

Adopting Hagen-Poiseuille framework, the analytical solu-
tion is derived for a fully developed, incompressible,
isothermal, laminar, steady, unidirectional flow of shear
stress-dependent time-independent non-Newtonian fluid
through a circular tube of radius (R) under constant pressure
gradient of

(
dP
dx

)
.

The shear rate γ̇ (r) along radial direction r is defined as:

γ̇ (r) = τ

η
, (5)

Substituting Eq. 2 in Eq. 5, we obtain:

γ̇ (r) = τ

η∞ + η0 − η∞

1 +
(

τ

τm

)S

, (6)

The shear rate γ̇ (r) in terms of velocity u(r) along radial
position r is as defined in Eq. 7:

γ̇ (r) = −du(r)

dr
, (7)

The shear stress (τ ) in a circular tube under a constant
pressure gradient of dP

dx
in x-direction is as defined in Eq. 8:

τ = −dP

dx

r

2
, (8)

Now, substituting Eq. 7 and Eq. 8 in Eq. 6, we obtain:

−du(r)

dr
= (− dP

dx
r
2 )

η∞ + η0 − η∞

1 +
(

−dP

dx

r

2 τm

)S

, (9)

The velocity profile along the radial direction can be
obtained as follows by integrating Eq. 9:

u(r) = dP

dx

r2

4 η0 η∞

(
η0 + (η∞ − η0)2F1

(
1,

2

S
; S + 2

S
; −η∞

η0

(
−dP

dx

r

2 τm

)S
))

+Constant,

(10)

here, 2F1 is the hypergeometric function as defined in
Eq. 17. At the wall of a circular tube, i.e., at r = R, by
imposing the no-slip boundary condition, u(R) = 0, Eq. 10
becomes:

Constant = −dP

dx

R2

4 η0 η∞

(
η0 + (η∞ − η0)2F1

(
1,

2

S
; S + 2

S
; −η∞

η0

(
−dP

dx

R

2 τm

)S
))

,

(11)

Substituting Eq. 11 in Eq. 10, we obtain velocity profile
in a circular tube for the Meter model fluid as:

u(r) = −dP

dx

1

4 η0 η∞

[
R2 (η0 + (η∞ − η0)2F1

×
(

1,
2

S
; S + 2

S
; −η∞

η0

(
−dP

dx

R

2 τm

)S
))

−r2

(
η0 + (η∞ − η0)2F1

(
1,

2

S
; S + 2

S
; −η∞

η0

×
(

−dP

dx

r

2 τm

)S
))]

, (12)

The maximum velocity of the Meter model fluid in a
circular tube will be at the center of the tube. On substituting
r = 0 in Eq 12, we obtain maximum velocity as follows:

Umax = −dP

dx

R2

4 η0 η∞

(
η0 + (η∞ − η0)2F1

(
1,

2

S
; S + 2

S
; −η∞

η0

(
−dP

dx

R

2 τm

)S
))

,

(13)

Considering Q as the volumetric flow rate, the average
velocity in a circular tube is given by:

Uavg = Q

πR2
= 1

πR2

∫ R

0
2π r u(r) dr, (14)
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Substituting Eq. 12 in Eq. 14, and integration and
simplification, we obtain average velocity during flow of a
non-Newtonian Meter model fluid as:

Uavg = −dP

dx

R2

8 η0 η∞

(
(η∞ − η0)3F2

(
1,

2

S
,

4

S
; S + 2

S
,
S + 4

S
; −η∞

η0

(
−dP

dx

R

2 τm

)S
)

+ 2 (η0 − η∞)2F1

(
1,

2

S
; S + 2

S
; −η∞

η0

(
−dP

dx

R

2 τm

)S
)

− η0

)
,

(15)

The analytical solution to estimate the volumetric flow
rate (Q) of fluid in a circular tube/micro-capillary obeying
the Meter model is given as:

Q = −dP

dx

π R4

8 η0 η∞

(
(η∞ − η0)3F2

(
1,

2

S
,

4

S
; S + 2

S
,
S + 4

S
; −η∞

η0

(
−dP

dx

R

2 τm

)S
)

+ 2 (η0 − η∞)2F1

(
1,

2

S
; S + 2

S
; −η∞

η0

(
−dP

dx

R

2 τm

)S
)

− η0

)
,

(16)

here, the hypergeometric function 2F1(a, b; c; z) is defined
as in Eq. 17 and the hypergeometric function 3F2(a, b, c;
d, e; z) is defined as in Eq. 18:

2F1(a, b; c; z) =
∞∑

n=1

(a)n (b)n zn

(c)n n! , (17)

3F2(a, b, c; d, e; z) =
∞∑

n=1

(a)n (b)n (c)n zn

(d)n (e)n n! , (18)

The hypergeom function of MATLAB was used to
solve a generalized hypergeometric function of the analyti-
cal solution of the Meter model. The generalized hyperge-
ometric functions 2F1(a, b; c; z) and 3F2(a, b, c; d, e; z)

are series as given in the Eq. S6 and S7 of SI, respectively,
which converge for |z| < 1. Since, all parameters of hyper-
geometric function of the Meter model are constant values,
the series of the generalized hypergeometric function of the
Meter model can be solved using hypergeom function of
MATLAB without error over a range of pressure gradient,
radius, and Meter model parameters.

Section S2 of the SI illustrates that the MM converts
to existing shear stress-dependent rheological models (i.e.,
Reiner–Philippoff model (Reiner 1930; Philippoff 1935),
Ellis model (Matsuhisa and Bird 1965)). The analytical
solution for Newtonian fluid and Reiner–Philippoff model
fluid can be derived using the analytical solution of the MM
(see Section S2 of the SI).

Section S2.1 of the SI shows that Eq. 12 and Eq. 16
convert to Hagen–Poiseuille equation on substituting η0 =
η∞. On equating Eq. 16 with the Hagen–Poiseuille equation

(Q = π R4

8 η
dP
dx

) and substituting dP
dx

R
2 = τw in Eq. 16, we

obtain an equation for an effective viscosity (ηeff) of fluid in
terms of wall shear stress (τw) as follows:

1

ηeff
= 1

η0 η∞

(
(η∞ − η0)3F2

(
1,

2

S
,

4

S
; S + 2

S
,
S + 4

S
; −η∞

η0

(
τw

τm

)S
)

+2 (η0−η∞)2F1

(
1,

2

S
; S + 2

S
; −η∞

η0

(
τw

τm

)S
)

−η0

)
,

(19)

Equation 19 helps determine the effective viscosity (ηeff)
of a non-Newtonian fluid from measurable parameters η0,
η∞, τm, S, τw, R, and dP

dx
. On comparing Eq. 16 with

Darcy’s law (Qdarcy = k A
η

dP
dx

), we obtain an effective
viscosity value as given in Eq. 19 and permeability (k) of the

porous media as (k = r2
eff
8 ). Here, reff is the hydraulic radius

of porous medium. Thus, the effective viscosity determined
using Eq. 19 could be advantageous in determining Darcy
scale flow rate and velocity of a non-Newtonian fluid in a
porous medium.

We observed that the effective viscosity value obtained
using Eq. 19 consistently appears at a distance of (0.8R)
from the center of a capillary for all experimental flow
data utilized in present work. This suggests that the value
of effective viscosity is equal to the viscosity value at a
distance of β R from the center of the tube, where 0 < β <

1. Thus, the approximate effective viscosity of the MM fluid
for a given flow condition will be as in Eq. 20:

ηeff = η∞ + η0 − η∞

1 +
(

β R

2 τm

dP

dx

)S
(20)

Here, β = 0.8 for flow through a circular geometry. We
note that different geometric shapes will have different β

value. Equation 20 is an easy-to-use equation for estimation
of the effective viscosity of the fluid for a given fluid flow
condition compared to Eq. 19. The advanced mathematical
tool is required to estimate effective viscosity value using
Eq. 19 due to the presence of hypergeometric function in the
equation. We obtain a semi-analytical solution for the flow
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rate of MM fluid by substituting Eq. 20 in Hagen–Poiseuille
equation as:

Q = dP

dx

π R4

8

⎛
⎜⎜⎜⎝η∞ + η0 − η∞

1 +
(

β R

2 τm

dP

dx

)S

⎞
⎟⎟⎟⎠

(21)

We define the effective Reynolds number (Reeff) of MM
fluid as:

Reeff = 2 ρ UavgR

ηeff
(22)

The Darcy friction factor (fD) during any type of a fluid
flow is fD = dP

dx
4 R

ρ U2
avg

. We obtain effective friction factor

(feff) for laminar flow of MM fluid (Eq. 23) by substituting
the MM analytical solution for average velocity (Eq. 15) in
Darcy’s friction factor equation.

feff = 256

ρ R3
(

dP
dx

) η2
eff = 128

ρ R2 τw
η2

eff (23)

Results and discussion

Meter model for shear-thinning
and shear-thickening fluids

Figure 1 shows a statistically good fit of experimental
and MM predicted (Eq. 2) viscosity–shear stress and shear
rate–shear stress data of a shear-thinning fluid (xanthan
gum fluid of Campagnolo et al. (2013) over a range of

concentrations, polyacrylamide (PAA) fluid of Escudier
et al. (2005)) and shear-thickening fluid (cornstarch fluid
in glycerol-water mixture of Brown and Jaeger (2012)).
The model parameters are estimated using Excel-Solver
methods that use GRG nonlinear algorithm (Kemmer and
Keller 2010). Figure 1 shows that cornstarch fluid has a
shear-thinning region at lower shear stresses and high shear
stresses. Literature reports a similar behavior for most of
shear-thickening fluids; thus, an application of MM for
shear-thickening fluids should be restricted to the shear-
thickening region of the viscosity–shear stress curve.

The material parameters of MM (Table 1) imply that
the zero shear viscosity (η0) and critical shear stress (τm)
increase exponentially and the shear-thinning property of
xanthan gum fluid (i.e., exponent S) increases linearly with
an increase in the concentration of the xanthan gum fluid.
This implies that MM helps quantitatively correlate effect
of physico-chemical parameters (e.g., XG concentration in
the present case) on rheology of shear-thinning and shear-
thickening fluids using measurable parameters.

The factor β

To determine β over a range of pressure gradient, radius
and Meter model parameter, we substitute Eq. 20 in Eq. 19
and solved resultant equation for β. Figure 2 shows that the
factor β values ranged from 0.73 to 0.82 over a range a
pressure-gradient, radius, and Meter model parameters. The
average value of the β = 0.8 suggests that an effective
viscosity of the fluid measured at a distance 0.8R distance
from the centre of the capillary can be considered an
approximate effective viscosity of the fluid.

Fig. 1 a Shear viscosity as a function of shear stress (Eq. 2); b
shear rate as a function of shear stress (Eq. 4) modelled using MM.
An experimental rheological data of xanthan gum (XG) fluid over
a range of concentrations (3 g/L, 1 g/L, 0.25 g/L, water) (Campag-
nolo et al. 2013); 0.125% polyacrylamide (PAA) fluid (Escudier et al.

2005), cornstarch (CS) fluid having volume fraction of 0.45 (Brown
and Jaeger 2012) modelled using MM. Continuous line shows MM
predications. The material parameters of MM are given in Table 1.
The root means square error (RMSE) ranges from 3.4×10−3 to
1.6×10−1
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Table 1 MM parameters of Campagnolo et al. (2013), Escudier et al. (2005), and Brown and Jaeger (2012)

Shear-thinning fluid Shear-thickening fluid

Parameter Xanthan gum (XG) concentration (g/L) PAA Cornstarch (CS)

(Campagnolo et al. 2013) (Escudier et al. 2005) (Brown and Jaeger 2012)

3 g/L 1 g/L 0.25 g/L 0 0.125% φ = 0.45

η0 (Pa·s) 1.2 0.08 0.01 0.000896 0.2257 1.8

η∞ (Pa·s) 0.000896 0.000896 0.000896 0.000896 0.000896 46

τm (Pa) 1.1 0.105 0.028 1 0.24 100

S 1.87 1.11 0.75 1 1.124 1.1

λ [s] 0.546 0.385 0.195 0.47 0.24

Validation of the analytical solution of theMeter
model

(a) Flow through a micro-capillary
An experimental velocity profile of Campagnolo

et al. (2013) gave good fit with the analytical solution
of the MM for radial velocity profile (Eq. 12) at
the pressure gradients of 92,000 Pa/m, 16,500 Pa/m,
4900 Pa/m, and 2000 Pa/m during flow of 3 g/L,
1 g/L, and 0.25 g/L xanthan gum fluid and water
(0.4% milk), respectively (see Fig. 3a). Moreover,
the analytical (Eq. 16) and semi-analytical (Eq. 21)
solutions of the MM for flow rate could correctly
determine the experimental flow rate of 30 μL/min
through a circular microfluidic channel of radius 160
μm. Figure 3b suggests that the viscosity profile of the
non-Newtonian shear-thinning fluid is bell-shaped in
a circular geometry. The viscosity increases gradually
near the wall and drastically in the central region of
the micro-capillary. The effective viscosity estimated
using Eq. 19 and Eq. 20 for flow of a 3 g/L, 1 g/L,
and 0.25 g/L xanthan gum fluid through a micro-

Fig. 2 The factor β over a range of a pressure gradient, radius, and
Meter model parameters. V1, V2, and V3 represent viscosity of the
3g/L, 1 g/L, and 0.25 g/L xanthan gum fluid, respectively, as given in
Table 1. P1 = 102 Pa/m, P2=104 Pa/m, and P3 = 106 Pa/m

capillary is 0.041 Pa·s, 0.0075 Pa·s, and 0.0022 Pa·s,
respectively. We note that the analytical solution of the
Meter model fluids is applicable for shear-thickening
fluid and needs validation using experimental data.

(b) Flow through a tube
Escudier et al. (2005) measured radial veloc-

ity profile of 0.125% polyacrylamide (PAA) fluid
flow in a circular tube (radius 5 cm) over a range
of Reynolds number (Reexpt), wherein the authors
defined Reynolds number (Reexpt) using shear vis-
cosity at the wall of pipe. Figure 4a depicts that the
analytical solution of the MM for the velocity pro-
file (Eq. 12) could correctly predict the experimentally
observed radial velocity profile at Reexpt = 676 and
Reexpt = 1620. The analytical solution of MM is
restricted to laminar flow and Fig. 4a suggests that at
Reexpt = 5020 PAA flow is in transition phase and at
Reexpt = 42900 is in turbulent phase. Figure 4b shows
that the shape of the viscosity profile becomes more
acute at the center of the circular tube with an increase
in Reynolds number or pressure gradient.

The effective Reynolds number (Reeff) values
calculated using Eq. 22 are drastically different from
Reexpt estimated by Escudier et al. (2005) (see
Table 2). The analytical solution of the MM could
correctly estimate the velocity profile, flow rate,
average velocity, and friction factor within the error
range (± 5%), when Reeff of PAA is less than 1241 (at
dP
dx

< 51 Pa/m). On the contrary, when Reeff was 3178
(at dP

dx
= 70 Pa/m) and 14,007 (at dP

dx
= 109 Pa/m),

flow becomes turbulent, and velocity profile could not
be matched with the experimental data. This result
suggests that the Reynolds number determined using
Eq. 22 gives comparable results with the Reynolds
number of a Newtonian fluid in a circular tube. Thus,
it is convenient to define a non-Newtonian fluid flow
as (i) laminar if Reeff < 2300, (ii) turbulent if Reeff >

2900, and (iii) transition zone if 2300 < Reeff < 2900.
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Fig. 3 Comparison of experimental (Campagnolo et al. 2013) and MM
analytical solution predicated by Eq. 12, a radial velocity profile, and
b radial viscosity profile during flow of a xanthan gum (XG) through

a circular micro-capillary (radius 160 μm) over a range of XG concen-
trations.The material parameters of MM are given in Table 1. The root
means square error (RMSE) ranges from 3.4×10−4 to 6.3×10−2

As given in Table 2, the friction factor of the MM
determined using Eq. 23 and the experimental friction
factor (fD) determined using Darcy’s law give approx-
imately the same result for a laminar flow (Reeff <

1241). As expected for the turbulent flow, the friction
factor estimate has a difference of 26% at dP

dx
= 70

Pa/m and 142% at dP
dx

= 109 Pa/m. For a Newtonian
fluid, the relationship between the Reynolds number
and the friction factor for laminar flow through a cir-
cular tube is given as Re = 64

fD
. The same relationship

applies to non-Newtonian fluid described by the MM.
The Reeff estimated using Eq. 22 is equivalent to the

Fig. 4 Comparison of experimental (Escudier et al. 2005) and MM
analytical solution predicated by Eq. 12, a radial velocity profile, and b
radial viscosity profile during flow of a 0.125% polyacrylamide (PAA)
fluid through a circular micro-capillary (radius 0.05 m) over a range

of Reynolds numbers. The material parameters of MM are given in
Table 1. The root means square error (RMSE) ranges from 3.4×10−4

to 8.5×10−3 for Reexpt < 1620
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Table 2 Validation of the analytical solution of MM for flow through a circular tube

Experimental observation (Escudier et al. 2005) MM estimate

Reexpt
dP
dx

Uexpt ηw fD ηeff Q UAvg Reeff feff

(Pa/m) (m/s) (Pa·s) (Pa·s) (m3/s) (m/s)

676 38.5 0.256 0.0376 0.1135 0.0467 0.002 0.2578 552 0.1158

1620 51 0.447 0.0276 0.0510 0.0358 0.0035 0.448 1241 0.0516

5020 70 0.939 0.0187 0.0159 0.0262 0.0065 0.8339 3178 0.0201

42900 109 3.36 0.0078 0.0019 0.0156 0.0172 2.184 14007 0.0046

Reynolds number estimated using Reeff = 64
fD

, if an
experimental error of up to 5% is taken into account
for laminar flow of Escudier et al. (2005).

The effective friction factor

A simple algebraic formula for the effective friction factor
as a function of pressure gradient, radius, and Meter model
parameters (η∞, η0, τm, S), as presented in Eq. 24, can be
obtained on substituting Eq. 20 in Eq. 23. This is a semi-
analytical formula for the effective friction factor of the
Meter model fluid.

feff = 256

ρ R3
(

dP
dx

)

⎛
⎜⎜⎜⎝η∞ + η0 − η∞

1 +
(

0.8 R

2 τm

dP

dx

)S

⎞
⎟⎟⎟⎠

2

(24)

Figure 5 shows that the effective friction factor estimated
using Eq. 23 closely matches the feff estimated using Eq. 24
over a range of xanthan gum concentrations. Figure 5
also shows a non-linear relationship between the pressure
gradient and the effective friction factor. An increase in the
radius of the circular capillary/pipe decreases the friction
factor. Moreover, increase in the polymeric concentration of
xanthan gum fluid shows increase in feff over a range of
pressure gradients and radii. The results suggest that Eq. 24
can be utilized to determine feff of a non-Newtonian fluid
using measurable parameters (i.e., radius, pressure gradient,
and Meter model parameters).

Radial viscosity variation

We determined radial viscosity variation (%) during flow of
an MM fluid through a circular tube/micro-capillary using
Eq. 25.

Radial viscosity variation (%)= (ηcenter−ηw)

ηcenter
×100, (25)

here, ηcenter and ηw are the viscosity at the center and wall
of a circular tube, respectively. The variation of viscos-
ity along the radial direction in a circular tube/capillary
depends on radius and pressure gradient, i.e., on shear
stress. Figure 6a shows estimated radial viscosity variation
(%) at various pressure gradients (1 to 108 Pa/m) and a
radius (0.05 μm–500 mm) during XG-3 g/L fluid flow
of Campagnolo et al. (2013) in a circular tube/capillary.
Similarly, Fig. 6b elucidates radial viscosity variation (%)
at various Reynolds numbers (10−9 to 107) and pressure
gradients (10−1 to 106 Pa/m).

It appears from Fig. 6a that for each radius, there exists
a critical pressure gradient value below which the viscosity
variation is insignificant. If radial viscosity variation of
10−1% is considered an insignificant variation, then 106

Pa/m, 105 Pa/m, 104 Pa/m, 103 Pa/m, 102 Pa/m, and 101

Pa/m will be the critical/threshold pressure gradient values
for capillaries of radius 0.05 μm, 0.5 μm, 5 μm, 50 μm,
500 μm, and 5 mm, respectively. Below these thresholds,
the viscosity variation could be considered as insignificant
or effectively constant. The choice of viscosity variation as
“an insignificant” might depend on the viscosity at a zero
shear stress (η0), and effect of the viscosity variation on the
output of work. Figure 6a also suggests that with an increase
in the radius of a capillary, magnitude of the critical pressure
gradient decreases.

Similarly, Fig. 6b shows that, for each pressure gradient,
there exists a critical Reynolds number below which the
viscosity variation is insignificant. Figure 6b shows that if
pressure gradient of the XG-3 g/L fluid through a circular
tube/micro-capillary is lower than 100 Pa/m and Reynolds
number is below 0.001, the radial viscosity variation is
insignificant. Overall, Fig. 6 illustrates that if applied
pressure gradients or Reynolds numbers are below their
threshold/critical values, the non-Newtonian fluid flow can
be modelled as a Newtonian fluid with zero shear stress
viscosity as its constant viscosity. This means that the fluid
flow through capillary can be modelled using the Hagen–
Poiseuille equation.
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Fig. 5 The effective friction
factor as a function of pressure
gradient over a range of radii
(5 μm to 0.5 m) and xanthan
gum (XG) concentrations. a XG
3 g/L; b XG 1 g/L; and c XG
0.25 g/L. Symbols show feff
estimated using Eq. 23 and
continuous solid lines show feff
estimated using Eq. 24 for
radius (R) of capillary/tube.
Meter model parameters are
given in Table 1

Fig. 6 a Effect of pressure gradient and radius (R) on the radial vis-
cosity variation (%) during flow of a xanthan gum (XG, 3 g/L) fluid
of Campagnolo et al. (2013) in a circular capillary/tube, b effect

of Reynolds number and pressure gradient on the radial viscosity
variation (%) during flow of a xanthan gum (XG, 3 g/L) fluid of
Campagnolo et al. (2013) in a circular capillary/tube
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Conclusions

The Meter model was validated against experimental
rheological data of cornstarch fluid, polyacrylamide fluid,
and xanthan gum fluid. The analytical solution of the MM
was validated against the experimentally measured velocity
profile during flow of non-Newtonian fluids (xanthan gum
and polyacrylamide) through a circular micro-capillary of
radius 160 μm and a circular tube of radius 0.05 m. An easy
to use semi-analytical solution (similar to Hagen–Posseuille
equation) is formulated for computation of an effective
viscosity and a flow rate. The effective Reynolds number
estimated using formulation presented in this work helps to
correctly characterize fluid flow in laminar, turbulent, and
transition flows. The Darcy friction factor computed using
formulation given in the current work, and experimental
friction factor gave equivalent results for laminar flow.
Finally, this work suggested that there exists a threshold
pressure gradient for a given radius and a critical effective
Reynolds number below which the radial viscosity variation
is insignificant, and it will be convenient to assume a
constant viscosity for such flows.

The method proposed in the present work to compute
effective viscosity, average velocity, radial velocity profile,
flow rate, effective Reynolds number, and effective friction
factor using measurable flow parameters will help in under-
standing the behavior of non-Newtonian fluids comprehen-
sively. In the future, we will apply the proposed model for
the flow of non-Newtonian fluids in heterogeneous porous
media using OpenFOAM and pore-network model and com-
pare our results to similar recent publications, for example,
Zami-Pierre et al. (2018).

Supporting Information

The SI includes:

– Time-independent non-Newtonian fluid empirical mod-
els (Table S1);

– Analytical solution for existing rheological models
(Section S2);

– The generalized hypergeometric function (Section S3)
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(2020) Newtonian and viscoelastic fluid flows through an abrupt
1: 4 expansion with slip boundary conditions. Phys Fluids
32(4):043103

Kemmer G, Keller S (2010) Nonlinear least-squares data fitting in
Excel spreadsheets. Nature protocols 5(2):267

Kim SK (2018) Flow-rate based method for velocity of fully developed
laminar flow in tubes. J Rheol 62(6):1397–1407

Matsuhisa S, Bird RB (1965) Analytical and numerical solutions
for laminar flow of the non-Newtonian Ellis fluid. AIChE J
11(4):588–595

Meter DM (1964) Tube flow of non-Newtonian polymer solutions:
Part II. turbulent flow. AIChE J 10(6):881–884

Meter DM, Bird RB (1964) Tube flow of non-Newtonian polymer
solutions: part I. Laminar flow and rheological models. AIChE J
10(6):878–881

Metzner AB, Reed JC (1955) Flow of non-Newtonian fluids—
correlation of the laminar, transition, and turbulent-flow regions.
AlChe Journal 1(4):434–440

Peralta JM, Meza BE, Zorrilla SE (2014) Mathematical modeling
of a dip-coating process using a generalized Newtonian fluid.
1. Model development. Industrial & Engineering Chemistry
Research 53(15):6521–6532

Peralta JM, Meza BE, Zorrilla SE (2017) Analytical solutions for the
free-draining flow of a Carreau-Yasuda fluid on a vertical plate.
Chem Eng Sci 168:391–402

Peters GWM, Schoonen JFM, Baaijens FPT, Meijer HEH (1999)
On the performance of enhanced constitutive models for polymer
melts in a cross-slot flow. J Non-Newtonian Fluid Mech 82(2-
3):387–427

Philippoff W (1935) Zur Theorie der Strukturviskositaet. I. Kolloid-
Zeitschrift 71(1):1–16

20 Rheol Acta (2021) 60:11–21



Reiner M (1930) In search for a general law of the flow of matter.
Journal of Rheology (1929-1932) 1(3):250–260

Sadowski TJ, Bird RB (1965) Non-Newtonian flow through porous
media. I. Theoretical. Transactions of the Society of Rheology
9(2):243–250

Savins JG (1969) Non-Newtonian flow through porous media.
Industrial & Engineering Chemistry 61(10):18–47

Sochi T (2015) Analytical solutions for the flow of Carreau and Cross
fluids in circular pipes and thin slits. Rheol Acta 54(8):745–
756

Sochi T, Blunt MJ (2008) Pore-scale network modeling of
Ellis and Herschel–Bulkley fluids. J Pet Sci Eng 60(2):105–
124

Steller R, Iwko J (2018) New generalized Newtonian fluid models
for quantitative description of complex viscous behavior in shear
flows. Polymer Engineering & Science 58(8):1446–1455

Tsakiroglou CD, Theodoropoulou M, Karoutsos V, Papanicolaou
D, Sygouni V (2003) Experimental study of the immiscible
displacement of shear-thinning fluids in pore networks. J Colloid
Interface Sci 267(1):217–232

Tsakiroglou C, Theodoropoulou M, Karoutsos V (2003) Fluid flow in
fractured formations. In: New paradigms in subsurface prediction,
Springer, pp 161–172

Tsakiroglou CD (2002) A methodology for the derivation of non-
Darcian models for the flow of generalized Newtonian fluids in
porous media. J Non-Newtonian Fluid Mech 105(2-3):79–110

Yasuda K (1979) Investigation of the analogies between viscometric
and linear viscoelastic properties of polystyrene fluids. Ph.D.
Thesis, Massachusetts Institute of Technology

Yilmaz F, Gundogdu MY (2008) A critical review on blood flow
in large arteries; relevance to blood rheology, viscosity models,
and physiologic conditions. Korea-Australia Rheology Journal
20(4):197–211

Zami-Pierre F, de Loubens R, Quintard M, Davit Y (2018) Effect
of disorder in the pore-scale structure on the flow of shear-
thinning fluids through porous media. J Non-Newtonian Fluid
Mech 261:99–110

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

21Rheol Acta (2021) 60:11–21


	Effective viscosity and Reynolds number of non-Newtonian fluids using Meter model
	Abstract
	Introduction
	Mathematical formulation
	Analytical solution

	Results and discussion
	Meter model for shear-thinning and shear-thickening fluids
	The factor 
	Validation of the analytical solution of the Meter model
	The effective friction factor
	Radial viscosity variation

	Conclusions
	Supporting Information
	Compliance with ethical standards
	References


